
. .
Submitted to 1998 IEEE Aerospace Conference

Design of the Remote Agent Experiment for Spacecraft Autonomy

Douglas E. Bernard’, Daniel Dvorak’, Ed Gamble’, Nicola Muscettola3, P. Pandurang
Nayak3, Barney Pe112, Brian VVilliams4

‘Jet Propulsion Laboratory, California Institute of Technology
2Caelum Research, NASA Ames Research Center

3Recom Technologies, NASA Ames Research Center
/

\
4NASA Ames Research Center

AE3STtiCT

Spacecraft designers are drawn to the idea of increasing the level of flight system
autonomy for a number of reasons. These include ensuring robust operation after faults,
taking advantage of science opportunities made possible by faster decision making, and
reduction in spacecraft operations costs.

Mission controllers are also interested in increased autonomy, but bring a number of
concerns and requirements to the discussion. Mission controllers need to know that they
will be able to control the spacecraft if things go wrong. They would prefer to demonstrate
new capabilities first on the ground and then migrate those capabilities to spacecraft, and
they need to be able to predict (at some level) how the spacecraft will behave.

This paper describes a remote agent approach to spacecraft autonomy that shows
promise for meeting the autonomous system aspirations of the spacecraft designers
while also meeting the needs of the mission controllers. The basic concept is that mission
controllers can communicate at a high level of abstraction to an agent that is remotely
located on the spacecraft. This remote agent understands the abstract goals and creates
and executes robust plans to carry them out.

The remote agent is formed by the integration of three separate technologies: an on-
board planner-scheduler, a robust multi-threaded executive, and a model-based fault
diagnosis and recovery system.

Among the autonomy capabilities to be demonstrated on the Deep Space One remote
agent are: achieving goal oriented on-board planning, replanning after failures given the
new context, demonstrating both time- and event-driven execution, demonstrating context-
sensitive task decomposition, demonstrating model-based failure detection and recove~,
and demonstrating call-home behavior in severe situations.

This remote agent approach is being designed into the New Millennium Program’s Deep
Space One mission as an experiment. The experiment is slated to be exercised in
October of 1998.

DEB 8/12/97

. .

(to be) Published in IUIW Aerospace Conference
Proceedings, Aspen, CO, March 21-28, 1998.

Design of the Remote Agent Experiment
for Spacecraft Autonomy

Douglas H. EJemardl, Gregory A. Dorais3, Chuck FLY3, Bdward EJ. Gamble Jr.’~ Bob Kanefsky3, James Kurien3,

William Millar3, Nicola Muscettola2, P. Pandurang Nayak2, Barney Pe113, Karma Rajan3, Nicolas Rouquettel,

Benjamin Smith’, Brian C. Willianls4

1 Jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

818-354-2597
douglas.e.bernard@j pl.nasa.gov,

ABS7’RACT-This paper describes the Remote Agent flight
experiment for spaeecrzrfl commanding and control. In the
Remote Agent approach, the operational rules and
constraints are encoded in the flight sotlware, and the
software may be considered to be an autonomous “remote
agent” of the spacecraft operators in the sense that the
operators rely on the agent to achieve particular goals.

The experiment will be executed during the flight cf
NASA’s Deep Space One technology validation mission.
During the experiment, the spacecratl will not be given the
usual detailed sequence of commands to execute. Instead,
the spacecraft will be given a list of goals to achieve during
the experiment and the Remote Agent flight software w il I
generate a plan to accomplish the goals and then execute the
plan in a robust manner while keeping track of how well the
plan is being accomplished. During plan execution, the
Remote Agent stays on the lookout for any hardware faults
that might require recovery actions or replanning.

In addition to describing the design of the remote agent, this
paper discusses technology-insertion challenges and the
approach used in the Remote Agent approach to address
these challenges.

The experiment integrates several spacecraft autonomy
technologies developed at NASA Ames and the Jet
Propulsion Laboratory: on-board planning, a robust nlulti-
threaded executive, and model-based failure diagnosis and
recovery.

] . IN’I ROI)UC’I’ION

2’3’4 NASA Ames Research Center,
Moffett Field, CA 94035

2 E$ecom l’echnologies @ Ames
Caehrm Research (.@ Ames

650-604-4756
nayak@ptolen]y.arc. nasa.gov

help identify and map candidate landing sites, find
resources, and demonstrate experimental technologies.

Current spacecmfi control technology relies heavily on a
relatively large and highly skilled mission operations team
that generates detailed time-ordered sequences of commands
or macros to step the spacecratl through each desired
activity. Each sequence is careftilly constructed in such a
way as to ensure that all known operational constraints art
satisfied. The autonomy of the spacecraft is limited.

This paper describes a flight experiment which will
demonstrate the Remote Agent approach to spacecratl
commanding and control. In the Remote Agent approach,
the operational rules and constraints are encoded in the flight
sotlware and the software may be considered to be an
autonomous “remote agent” of the spacecraft operators in the
sense that the operators rely on the agent to achieve
particular goals. The operators do not know the exact
conditions on the spacecratl, so they do not tell the agent
exactly what to do at each instant of time. They do,
however, tell the agent exactly which goals they want
achieved in a period of time and how and when to report in.

The Remote Agent (RA) is formed by the integration ef
three separate technologies: an on-board planner-scheduler, a
robust multi-threaded executive, and a model-based fault
diagnosis and recovery system.

This Remote Agent approach is being designed into the
New Mil lennium Program’s Ekcp Space One (DS1)
mission as an experiment. l-he spacecratl (see Figure I)
will fly by an asteroid, Mars, and a cornet.

Robotic spacecratl are making it possible to explore the
other planets and understand the dynamics, composition,
and history of the bodies that make up our solar system.
I’hesc spacecraft enable us to extend our presence into space
at a fraction of the cost and risk associated with human
exploration. They also pave the way for human exploration.
Where human exploration is desired, robotic precursors c,an

pl 1214/97

. .

Figure 1. DS1 Spacecraft

The New Millennium Program is designed to v?lidate high-
payoff, cutting-edge technologies to enable those
technologies to become more broadly available for use on
other NASA programs. The experiment is slated to be
exercised in October of 1998.

Section 2 discusses the benefits to the spacecratl community
from increased spacecraft autonomy and the motivation fm
this work, Section 3 outlines some of the challenges to
acceptance of spacecratl autonomy and Section 4 introduces
the Remote Agent design approach and architecture. Section
5 covers the particulars of the DS 1 Remote Agent
experiment. Section 6 discusses the functioning of each d
the three technology components of the Remote Agent.
Section 7 describes how the Remote Agent sotlware is
integrated into a separately-developed Deep Space One flight
software. Section 8 describes how the Remote Agent
experiment is tested prior to flight, and Section 9
summarizes the paper and describes plans for future Remote
Agent development.

2. NI:IIJ Ixm AuION(JMY ON SPACKRAFI

I’he desire to increase the level of spcecraft autonomy
comes from at least three separate objectives of spacecraft
customers: taking good advantage of science opportunities,
reducin~ spacecraft operations costs, and handling
uncertainty---including ensuring robust operation in the
presence of faul[s.

Taking A dvun[([ge of Science opporiunitics

Our science customers would like the spacecraft to be able to
modify its sequence of actions more quickly based on latc-
breakirrg information available on the spacecraft.

For example, an ultraviolet spectrometer on a comet flyby
mission might icicntify a region of particular interest fm
intense scrutiny. With current technology, scientists have
to make do wi th whatever prc-pkrnncd s e q u e n c e cf

observations has been stored on-board and cannot reprogram
any of those to examine more closely the newly identified
region of interest. With a future RA, plans may be revised
based on this new information hours or minutes before
flyby. With ground-based control, a turnaround time cf
hours is impractical and a turnaround time of minutes is
physically impossible due to the speed of light. See Figure
2.

t’arly

Planned
flwmarmn

I
., -. ---- . . . , . ’‘4

Figure 2. Fast replanning based on new information

Similarly, on the Mars Pathtinder mission, the science team
requested the ability for the meteorology instrument, when
it senses that a dust devil is passing, to tell the camera to
take unplanned images aimed at the departing dust devil. It
is ditllcult to see how this capability could coexist with
time-tagged command sequences for the imaging planned fm
the rest of the day.

Reducing SpacecraJ Operations Costs

Our funding sources are insisting that means be found to
reduce operations costs. A fixed amount of funding is
available from NASA for solar system exploration including
spacecraft development and operations. When operations
costs are reduced, more resources become available fw
developing a wider variety of interesting solar system
exploration missions. Analyzing operations budgets shows
that development of detailed spacecratl sequences accounts
for the largest operations expefr~iture.

By commanding spacecraft at a higher level of abstraction,
much of the sequence development task becomes the
responsibility of the flight software, and ground operations
costs are reduced. Some of the savings come from a change
in how we think about operations planning. The old
approach was that all spacecratl activities needed to be
predicted and approved by ground controllers. The new
thinking is that the ground controllers do not (always) need
to know the low-level details of spacecraft activities but only
the capabilities of the spacecraft and the high-level goals.

Ensrwing RobIis! Operation irl the presence ofrlncer[ainty

Our customers still require high reliability and the ability to
respond to problems in flight. For existing spacecraft, the
Fautt pro tect ion system ofien represents the nlost
autonomous system on-board. Robust operation is desired
in the presence of hard faults, degraded performance, and
operator errors.

p 2 I -)/4/97

I’raditional spacecraft, even in conservative designs,
generally provide some minimal level of fault protection out
of necessity. Otherwise, any major problem with attitude
control, power, or antennas could by itself prevent ground
controllers from diagnosing or correcting the problem. The
Remote Agent is able to go a step further: after recovering
from a fault, it can continue the mission, even if it involves
replanning for degraded capability.

Another advantage of the Remote Agent derives from the
nominal and failure modeling used by the fault diagnosis
engine. For hard-coded fault protection designs, the domain
knowledge is implicit rather than explicit. This means that
we rely on the fault protection algorithm developers to
understand the system, and abstract from that understanding
a design for which symptoms to look for and what responses
to take when they show up. In contrast, with model-based
fault diagnosis, the fault protection software engineers
explicitly model how the system behaves in nominal and
failure cases. Fault diagnosis then becomes a search fw
likely diagnoses given observed symptoms. Since the
spacecraft designers understand the details of the system
behavior, there is an advantage to having them ~ncode their
knowledge explicitly at design time.

3. AU T O N O M Y T E C H N O L O G Y IN S E R T I O N

REQUIREMENTS

It is not enough to build a better mousetrap; it won’t catch
any mice unless it gets used. There are similar issues fw
the insertion of higher levels of autonomy into spacecrdl
designs, The design must be developed with the needs of
two sets of customers in mind: the spacecraft test engineers
and the mission controllers.

Spacecraft T’es I

Conversations with spacecraft test engineers have raised a
number of concerns that must be addressed in any
autonomous system design process.

1. Determinism and non-determinism Is the system non-
deterministic? How do we test the system if we don’t
control its initial conditions in flight?

For the current Remote Agent design, the system is, in fact,
deterministic to the extent that the same set of inputs will
yield the same outputs each time. I’he context for this
question, however, is the fact that we cannot predict the
exact set of commands that the Remote Agent will use to
achieve a set of goals far in the future since we cannot predict
exactly what the spacecratl state will be at that time. This
situation is common in another context, that of attitude
control systems. We don’t know exactly when a particular
thruster will tire, but we do know that the system will firr
thrusters as needed to achieve the higher level goal cf
holding the commanded attitude.

So bow do we test such a system? F:or an attitude control
system, we develop multiple scenarios and verify that the
pointing error meets requirements in all situations. We also
check l}lat the propellant usage is acceptable while the

requirements are being met. Continuing the analogy with an
attitude control system, we develop multiple scenarios and
test whether the high level goals are met, and analyze
whether the resources required to do so were acceptable,

2. Earlier sysfetn behavior definition: ‘Ile flight system is
more complex, so more testing is needed earlier and the
desired behavior needs to be defined long before launch.

Some additional techniques are required. These are
described in the testing section of this paper.

The concern about early definition may be valid depending
on how much of the spacecraft behavior wc choose to build
into the flight software before launch. With the traditional
sequence development approach, many sequences arc
developed after launch, so there is no opportunity to observe
full end-to-end behavior in a test environment. With an on-
board planner, we now have the opportunity to design and
test the behavior before hand. It should be pointed out that
this is an opportunity and not a requirement. For example,
the Project may choose to delay final design of flyby
scenarios until after launch. In this case, we should expect
to update the on-board planner and mission goals at the
time that the scenario is finalized and this may be afler
launch.

3. Tes(Plan coverage: flow do we develop a test plan that
assures adequate coverage? How should test cases be
devised? What needs to be tested in system test? The core
engines underlying the Remote Agent arc unfamiliar to
spacecraft test teams and could require large effort to test.

First, a distinction should be made between the Remote
Agent infrastructure or engines and the mission-unique
models. The Remote Agent infrastructure will be
extensively analyzed and tested in pre-integration unit tests.
At the system test level, the focus should be on whether the
behavior of the Remote Agent meets the goals and
constraints set for it.

As with any complex system, the test plan needs to include
nominal cases, failure cases, and cases that test the
boundaries of the system so that the operators learn where it
will break. The planner can be challenged by overloading
the number of tasks to be done in a short time. The
executive may be challenged with a large number of tasks
requiring immediate response, and fault protection may be
challenged by examining its response to multiple, closely
spaced failures. Planner unit tests will include examples
using each cormtraint. Executive unit tests should explore
each approach that might be used to achieve a task and fault
protection tests still depend on devious testers to invent
challenging scenarios.

A Iargc variety of tests seeking extreme and boundary
condition behavior is indicated when testing any complex
software systcm.

A major advantage of the Remote Agent approach is that it
dcpcrxls on declamtive httrdkvare knowledge; in o ther
approaches the hardware knowledge is captured explicitly.

p 3 1214/97

This comes in handy at review time. The sotlware engineer
can sit with the hardware expert and review the declarative
model of the hardware. This helps reduce errors in
understanding between the hardware and software engineers.

Mission Operations

Mission operators or controllers have clearly expressed a
number of requirements or desires with respect to fielding
autonomous systems. These include:

1. Low level commanding: operators should be able to have
access to low-level control of spacecraft hardware unimpeded
by the autonomous system.

As this requirement became clear, the Remote Agent design
was modified to allow low-level hardware command
access---potent ially bypassing some autonomous
capabilities and safeguards. Unless the Remote Agent is
instructed in the context and goals of these low level
commands, they need to be used carefully and when the
spacecraft is in a low activity quiescent mode.

2. Ground override authority: An ability to ccynmand the
spacecratl to revert to a low-level of autonomy mode if the
controllers decide that they want to disable the autonomous
feature.

This requirement is met on DS 1.

3. A4igration of autonomy capabilities: A sequence that
allows demonstration of autonomous capabilities as ground
system capabilities prior to fielding them on the spacecraft
as on-board capabilities.

The Remote Agent experiment is being designed to meet
this requirement by first engaging the executive as just
another basic sequence engine, then allowing Remote Agent
to execute a pre-canned plan sent from the ground, and
finally enabling the on board planner, bringing the full DSI
Remote Agent level of autonomy to bear.

4. Behavior Prediction: The ability to predict (at some
level) what the behavior of the spacecraft will be when the
spacecraft begins to execute the on-board-generated plan.

There will be a copy of the on-board planner built into the
ground system. This copy wil I be used to generate
experience and rules of thumb as to what sets of goals are
easily achievable and what sets are difficult to achieve for the
on-board system based on these rules of thumb. The
operators will define the goals for each mission phase and
since the Remote Agent is closing the loop around these
goals, the best prediction of spacecmtl behavior is that the
goals will be achieved on schedule.

The Remote Agent has been designed to support multi-level
commanding and monitoring in order to enable ground
controllers to adjust the level of autonomy they desire across
diffcrcn[activities or mission p}lascs [I].

AI{ CIIIII;CI(JI<I;

The New Millennium AUtOrrOINy Architecture rapid
[’rototypc (NewMaap) effo{t [2] i d e n t i f i e d the key
contributing technologies: on-board planning and
replanning, multi-threaded smart executive, and n~odel-
based failure diagnosis and rcprtir. In NewMaap, we learned
how to take advantages of the strengths and weaknesses cf
these three technologies and merge them into a powerful
system. After successful completion of the prototype, the
RA was selected as one of the NMP technologies for DS 1.
It will be uplinked to the spacecraft as a software
modification and demonstrated as an experiment,

Fig. 3 shows the communications architecture for the
Remote Agent’s interaction with the rest of the spacecraft
flight sotlware. Note that all interaction with the hardware
is the responsibility of the real-time software. The RA is
layered on top of that software, but also gathers information
from all levels to support fault diagnosis.

Figure 3. Remote Agent Communication Architecture

Several spacecraft commanding styles are possible. Goal-
oriented commanding is the intended operating mode fw
most of an RA mission; provision has been made fw
updating the goals in flight. In a typical planning cycle, the
executive is executing a plan and gets to an activity that can
be interpreted as “time to plan the next segment.” The
executive calls the planner with the current and projected
spacecraft state including the health of all devices. The
plannerlschedulcr generates a new plan using priorities,
heuristics, and domain models including system
constraints. “1’hc planner sends this plan to an executive that
creates an agenda of plan items and executes the agenda,
Plan execution robustness is added by making use of the
Model-based Mode Identification and Reconfiguration (MIR)
system. I’he MIR system includes monitors, mode
identif ication for nominal and failure condit ions,
communication of state to the executive and proposals of
reconfiguration actions to take in (he event of failures.

[kich of the components of the Remote Agent will be
described in more detail in Section 6, but tirst the Remote
Agent experiment for the I)ecp Space One mission will be
described in more detail.

p 4

5. 1) II: DEEP SPACX ONfl Rf;MoTE AG E N T

The Remote Agent eXperinlent ([{AX) for Deep Space One
is a demonstration of RA capabilities. Since an alternate
method of control is used for most of the mission, RAX is
focused on demonstrating specific autonomy capabilities
rather than controlling al! aspects of spacecraft behavior. The
Remote Agent controls the following spacecratl hardware
and software: the camera for use in autonomous navigation,
the Solar Electric Propulsion (SEP) subsystem for trajectory
adjustment, the attitude control system for turns and
attitude hold, the navigation system for determining how
the actual trajectory is deviating from the reference trajectory
and what SEP thrusting profile is needed to stay on the
reference trajectory, the Power Amplification and Switching
Module (PASM), for use in demonstrating fault protection
capabilities.

Four failure modes are covered by RAX. These are:

FI. Power bus status switch failure

F2. Camera power stuck on k

F3. }Iardware device not communicant ing over bus to
flight computer

F4. Thruster stuck closed

Mission Scenario

The Remote Agent experiment is executed in two phases, a
12 hour Phase One followed a couple of weeks later by a 6
day Phase Two.

In Phase One, we start slowly by first demonstrating the
executive operating in the manner of a low level sequencer
by accepting commands to turn devices on and ofl. Next, a
“scripted” mode is demonstrated with execution of plans
uplinkcd from the ground. The main demonstration hem>
will be commanding the spacecraft to go to and stay in a
known, safe, standby mode and then take a series of optical
navigation (OpNav) images. In addition, Failure mode F1
will be demonstrated by injecting power bus switch status
readings indicating that a power bus is unexpectedly OK
The fault diagnostic system will examine this information
along with other information that indicates that devices on
the bus arc still communicating normally with the flight
computer and conclude that the failure is in the switch status
measurement and not in the bus itself. No action will
result. No planning or SEP thrusting are attempted in
Phase One.

In J’base Two, we also start by demonstrating low level
commanding, and then initiate on-board planning. Based
on the spacecratl initial state and the uplinked goals, the
planner will generate a three day plan including imaging f.x
optical navigation, thrusting to stay on the reference
trajectory, and simulated injection of faults to test out
failures F2, F3, and F4. First the camera power stuck on
failure (F2) is injected and the executive has been
programmed tc) understand that in the event that the camera
does not respcmd to power switch requests, replanning is

indicated. This might be necessary, for example, because the
initial plan’s assumptions on power consumption w
incorrect with the camera on when it should be otl The
plan is declared failed, the spacecraft is sent to a standby
mode while the planner is requested to replan based on the
new information that the camera power switch is stuck on.
When the new plan is received by the executive, execution
resumes including navigation and SEP thrusting. Near the
end of the three day plan, the planner is called to generate
the plan for the next three days. This plan includes
navigation and SEP thrusting as before. It also includes
two simulated faults. First, a failure ofa hardware device to
communicate is injected (F3); the proper recovery is to reset
the device without interrupting the plan. Next, a thruster
stuck closed failure (F4) is simulated by injecting an
attitude control error monitor above threshold. The correct
response is to switch control modes so that the failure is
mitigated.

RA Capabilities Demonstrated with DS1 RAX

The above scenario has been designed to demonstrate that
the DS 1 Remote Agent meets the following autonomy
technology goals:

● Allow low-level command access to hardware

● Achieve goal oriented commanding

c Generate plans based on goals and current spacecraft state
expectations

● Determine the health state of hardware modules

● Demonstrate model-based failure detection, isolation,
and recovery

● Coordinate hardware states and software modes

● Replan after failure given new context

6. RA C O M P O N E N T S

I’he major components of the Remote Agent are discussed
below.

Planrrcr/Sched[[ler

The highest level commanding interface to the Remote
Agent is provided the Planner/Scheduler (PS). PS maintains
a database of goals for the mission, the mission profile, that
spans a very long time horizon, potentially the duration d
the entire mission. Over the duration of a mission PS is
iteratively invoked by the executive to return a synchronized
nct~vork of high-level activities, the plan, for each short-term
scheduiirrg horizon into which the mission profile is
partitioned. I’ypically each short-term horizon covers several
days. When PS receives a request from EXEC, it identifies
the next scheduling horizon, retrieves from the mission
profile the goals relevant to that horizon, merges in the
expected initial spacecraft state provided by fXEC into a
incomplete, initial plan and generates a fully populated plan.
1’S sends that plan to I:XIT for execution.

For [{AX, Phase I’\vo, the mission profile will cover 6 days
and contain two scheduling horizons of three days each.
[<AX allows the spccillcation of two kind of goals. One
spccities the frequency and duration of the “optical

ps

navigation windows”, the time during which the spacecraft
is requested to take a set of asteroid pictures to be used fix
orbit determination by the on-board Navigator. The second
type of goal specifies a “mini-sequence”, i.e., a set of lower-
level commands that EXEC will issue to the real-time
software, and requirements to activate the mini-sequence
with certain synchronization constraints with respect to
other planned activities. A new plan will be requested cf
MM/PS in two situations:

. rromimd operations: in this case I;XEC reaches the
activity Plarlner_Pl an_Next_Hor i zon toward
the end of the current scheduling horizon. EXEC will
issue a request for a new plan. This request will define
the new initial state as the expected final state from the
plan currently in execution. This will allow seamless
patching of the old and new schedule without any
interruption of execution.

● Juu/r respome: if the fault protection system detects an
anomaly that will impact the executability of future
tasks in the plan, the EXEC will request a new plan to
resume nomlal operations afier having put the spacecrat?
in a safe standby mode. In this case the jritial state
describes the standby tasks or holding states for each
subsystem modeled in the plan and health information
describing possibly degraded modes for failed
subsystems.

Notice that from the point of view of PS both the nominal
and fault response case are handled exactly in the same way.

Ground controllers can add, modify, or delete goals from the
mission profile by explicitly issuing a command to the
mission profile. For example, in a mission in which the
spacecratl communicated to Earth through the Deep Space
Network, the final communication schedule allocated to the
mission may become available only a few weeks ahead of
time and it is possible that a schedule may change with a
short notice (e.g., within a week). Ground controllers will
need to communicate both of these situation to the spacecraft
by issuing appropriate edit commands to modify the
mission profile.

PS provides the core of the high-level commanding
capabi l i ty o f R A X. Given an init ial, inconlpiete plan
containing the initial spacecraft state and goals, PS generates
a set of synchronized high-level activities that, once
executed, will achieve the goals. PS presents several features
that distinguish it from other Artificial Intelligence and
Operations Research approaches to the problem. For
example, in the spacecratl domain planning and scheduling
aspects of the problem need to be tightly integrated. The
planner needs to recursively select and schedule appropriate
activities to achieve mission goals and any other subgoals
generated by these activities. It also needs to synchronize
activities and allocate global resources over time (e.g.,
power and data storage capacity). Subgoals may also be
generated due to limited availability of resources over time.
For example, it may bc preferable to keep scientific
instruments on as long as possible (to maximize the amount
of science gdcrcd). flowevcr limited power availability
may force a temporary instrument shut-down when other

more missiomcritical subsystems need to bc functioning. In
this case the allocation of power to critical subsystems (the
main result of a scheduling step) generates the subgoal
“instrument must be off’ (which requires the application cf
a planning step). The PS is able to tune the order in which
decisions are made to the characteristics of the domain by
considering the consequences of action planning and
resource scheduling simultaneously. This helps keep the
search complexity under control.

This is a significant difference with respect to classical
approaches both in Artificial Intelligence and Operations
Research where action planning and resource scheduling arE
typically addressed in two sequential problem solving
stages, often by distinct software systems. Another
important distinction between the RA PS and other classical
approaches to planning is that besides activities, the planner
also “schedules” the occurrence of states and conditions.
Such states and conditions may need to be monitored to
ensure that, for example, the spacecraft is vibrationally quiet
when high stability pointing is required. These states can
also consume resources and have finite durations and,
therefore, have very similar characteristics to other activities
in the plan. PS explicitly acknowledges this similarity by
using a unifying conceptual primitive, the token, to
represent both actions and states that occur over time
intervals of finite extension.

PS consists of a heuristic search engine, the Incremental
Refinement Scheduler (IRS) that operates in the space cf
incomplete or partial plan [6]. Since the plans explicitly
represent time in a numeric (or metric) fashion, the planner
makes use of a temporal database. As with most causal
planners, PS begins with an incomplete plan and attempts
to expand it into a complete plan by posting additional
constraints in the database. Ihese constraints originate from
the goals and from constraint templates stored in a model cf
the spacecraft. l’he temporal database and the facilities fm
defining and accessing model information during search arc
provided by the f lSTS system. For more details on PS and
the }1S1’S system see [3] and [4]. Figure 4 describes the PS
architecture.

Figure 4. l’lilIl[lcr/Scllccl[llcr Architecture

‘1’hc coverage of the RAX model is described in Table 1.
Appendix 11 gives a detailed description of the timclines and
tokens needed by 1’S to hancllc the propulsion and thrust
subsystems of the spacecraft.

p 6

Table I Summary of Planner Models for liA Experiment

phd2@. m
I MICAS

&

I

I

Propulsion
& Thrust

Attitude

i Power
~ Manage-
I rnent

Executive

~ Planner

~ Mission

+

Yaiabki IYrEs
Executable: 2 7

Health: 1

Goal: 1

Executable: 1

lntema[: I
——
Goal: 2

Executable: 1

Internal: 1

5

9

Executable: 1

Health: 1

4

--1-
Goal: 1 2

lntemal: 1

Goal: 1 2

Executable: 1

Executable: 1 I 2

Goal: 1

I

2

(2QmLME !a?mmws
MM!a

14 Models the health, mode and activity of the MICAS imaging camera. RAX
demonstrates fault injection and recovery for this device as part of the 6
day scenario.

6 I’o schedule Orbit determination (OD) based on picture taking activity.

12 Based on thrust schedule generated by the NAV module, the planner
generates plans to precisely activate the IPS in specific intervals based on
constraints in the domain mode] and is the most complex set of timelines
and subsystem controlled by the planner (see Appendix B for details)

4 Enables the planner to schedule slews between constant pointing attitudes
when the spacecratl maintains its panels towards the sun. The targets cf
the constant pointing att i tudes are imaging targets, Earth (fw

. communication) and thrust direction (for IPS thrusting.)

1 Allows the planner to ensure that adequate power is available when
scheduling numerous activities simultaneously.

7 Allows modeling of low level sequences bypassing planner models giving
Mission Ops the ability to run in sequencing mode with the RA.

2 To schedule when the Executive can request the plan for the next horizon.

2 Allows the Mission Manager and the planner to coordinate activities based
on a series of scheduling horizons updatable by Mission Ops for the entire
mission

Each subsystem in the model is represented in the P S E;xnected device health information over time is tracked hv

database. ‘Each subsystem has a set of dynamic state
variables whose value is tracked over time. Each dynamic
state variable can assume one or more values. A token is
associated with a value of a state variable occurring over a
finite time interval. Each value has one or more associated
compatibility, i.e., patterns of constraints between tokens.
A legal plan will contain a token of a given value only if all
temporal constraints in its compatibility are satisfied by
other tokens in the plan. An example the atomic temporal
constraints that belong to a compatibility can be expressed
in English as “While the spacecratl is taking asteroid
pictures requested by navigation, no ion thrusting is
allowed”.

In Table 1 we identify four distinct kinds of state variables.
A ~oa/ timelirle will contain the sequence of high-level
goals that the spacecraft can satisfy (e.g., the Navi gate
goal described before). Goal timelines can be filled either by
ground operators or by on-board planning experts seen by
PS as goal generators. For example, in order to generate the
portion of the plan that commands the IPS engine, PS
interrogates NAV which returns two types of goals: the total
accumulated time for the scheduling horizon and the
thrusting profile to be followed. These two types of
information arc laid down on separate goal timclines.

p 7

lre~z//JI timclines. The expected profile is communicated ~y
I;XI:C to PS in the initial spacecraft state. EXEC can
communicate that the health ofa device has changed even if’
no fault has occurred. For example, in a previous fault
situation ground controllers may have decided that the IPS
engine is not trustworthy and therefore should not be
considered operational until further tests have been run. PS
~vill therefore generate plans t}lat do not involve using the
engine. They may decide to run some tests by posting
appropriate goals in the mission profile and therefore not
breaking nominal plan execution. After the tests they may
decide that the IPS engine is trustworthy atlcr ail and may
send a message to EXI:C that it is again OK to thrust.
[:X[;C will communicate this to PS through the health
timeline in the next scheduling horizon, without needing to
interrupt regular plan execution and put the spacecraft in
standby mode.

Another kind of state variable is an it/tertm/ tirneline. These
are only used by the planner to internally organize goal
dependencies and subgoaling. Final Iy, an e.wcu[alde state
variable corresponds to tasks that will bc actually tracked
and exccutcd by 1:x1:(’.

I’hc RAX PS treats all timclines and tokens within a
simple, unified search algorithm. This has advantages. The
ground team could force certain behaviors of the spacecraft
by including in the mission profile explicit tokens on
executable timelines. The additional tokens will be treated
by PS as goals, will be checked against the internal PS
model and missing supporting tasks will be automatically
expanded to create a overall consistent plan. This will
greatly facilitate the work of the ground team.

Table 2 gives quantitative information regarding the three
plans that PS is expected to generate on board during the 6

day experiment. The tokens and con$t~a~nt~ Co]unlns
contain the number of tokens and pairwise temporal
constraints (e.g., “token A starts between 1 and 2 minutes
after token B“) in the plan respectively. The first CPU time
column reports the actual measured run time of PS on a
PowerPC/VxWorks flight hardware testbed. The next
column reports the estimated time to generate the same
plans on the actual RAD6000 flight processor for DS 1. The
scale up factor of 40 is due to the lower speed of the
RAD6000 with respect to the PowerPC (about one order cf
magnitude) and the allocation of only 25°/0 of the CPU to
the PS process.

Table 2. PS Metrics for Performance

Scenario tokens constraints CPU time on Estimated CPU
PPC testbed time on RAD6000
(mm:ss) (bh:rnrn:ss)

First horizon 105 141 7:13 4:48:00

Replan in first 69 66 4:01 2:40:00
horizon

Second horizon 126 192 13:49 9:12:00

The Smart Executive (FXEC) is a reactive plan execution
system with responsibilities for coordinating execution-time
activity. EXEC’S functions include plan execution, task
expansion, hardware reconfiguration, runtime resource
management, plan monitoring, and event management. The
executive invokes the planner and MIR to help it perform
these functions. The executive also controls the lower-level
software by setting its modes, supplying parameters and by
responding to monitored events.

7b.~k Expansion EXFC provides a rich procedural language,
ESL [5], in which we define how complex activities should
be broken up into simpler ones. A procedure can specify
multiple alternate methods for goal achievement to increase
robustness. If a selected method fails, EXFC will try any
other methods applicable in the current context.

Resource Management As a multi-threaded system, EXEC
works on multiple activities simultaneously. These
act ivities may compete for system resources within the
constraints not already resolved by ground or the planner.
F,XEC manages abstract resources by monitoring resource
availability and usage, allocating resources to tasks when
available, making tasks wait until their resources m
available, and suspending or aborting tasks if resources
become unavailable due to failures (such as a device
breaking). See Ref. [8] for a more detailed discussion.

R,4A’ Star/r/p Upon startup, EXEC asks MIR to describe the
current spacccrrrtl contlguration. ‘1’hcn RXEC puts the spacecraft
into standby mode. Standby mode is a safe mode that
guarantees sufficient power and ground communications as
well as a thermally benign state. Once standby mode has
been achieved, EXEC then
Cycle.

L@rolionol (jcle T h e
including the planning loop,

begins its normal operational

top-level operational cycle,
is described as follows. liXl:C

p 8

requests a plan, by formulating a plan-request describing the
current plan execution context. It later executes and
monitors the generated plan. l;XEC executes a plan by
decomposing high-level activities in the plan into primitive
activities, which it then executes by sending out commands,
usually to the real-time flight software (FSW). EXEC
determines whether its commanded activities succeeded
based either on direct feedback from the recipient of the
command or on inferences drawn by the Mode Identification
(Ml) component of MIR. When some method to achieve a
task fails, IIXI:C attempts to accomplish the task using an
alternate method in that task’s definition or by invoking the
Mode Reconfiguration (MR) component of MIR as a
“recovery expert”. If MR finds steps to repair the failing
activity without interfering with other concurrent executing
activities, F,XFK performs those steps and then continues on
with the original definition of the activity. If the EXEC is
unable to execute or repair the current plan, it aborts the
plan, cleans up all executing activities, and puts the
controlled system into a stable safe state (called a “standby
mode”). In situations where continued operation is allowed,
tiXEC then requests a new plan from PS while maintaining
this standby mode until the plan is received, and finally
executes the new plan.

Periodic f’lantritrg Cycle As shown in Figure 5, our
approach separates an extensive, deliberative planning phase
from the reactive execution phase, executing infrequently
generated plans over extended time periods. i!ow f~ in
advance the system should plan is constrained by several
factors, including uncertainty about the results of execution.
We use the tern] “planning horizon” to describe the length
of time into the future for which a pktn is constructed. In
normal operations, the RA would plan a week ahead d
time, and wbcn it comes near the end of’ the current plan it
would start working on the plan for the next horizon. Since

[~/4/97

the actual RAX experiment lasts for only one week, the
planning horizon is set considerably shorter (3 days).

Plan
failure

assumptions Next horizon Plan

violated plan request ready

Figure 5 Executive Periodic Planning (Jcle

We address the problem of generating initial states for the
next planning round differently depending on the status ef
the currently-executing plan. Plans normally include the
task of planning for the next horizon—i.e., the planner sets
aside a good time for its own (next) computation. At this
point, the executive sends to the planner the remainder cf
the current plan in its entirety, with annotations for the
decisions that were made so far in executing it. The current
plan serves as its own prediction of the future at the level of
abstraction required by the planner. Thus, all the planner
has to do is extend the plan to address the goals of the next
planning horizon and return the result to the executive. The
executive must then merge the extended plan with its
current representation of the existing plan. The net result is
that, from the executive’s perspective, executing multiple
chained plans is virtually the same as executing one long
plan. This has the useful consequence that it enables the
executive to engage in activities which span multiple
planning horizons (such as a 3-month long ion engine burn)
without interrupting them.

In the event of plan failure, the executive enters standby
mode prior to invoking the planner, from which it generates
a description of the resulting state in the abstract language
understood by the planner. Note that establishing standby
modes following plan failure is a costly activity with respect
to mission goals, as it causes us to interrupt the ongoing
planned activities and lose important opportunities. For
example, a plan failure causing us to enter standby mode
during the comet encounter would cause loss of all the
encounter science, as there is no time to re-plan before the
comet is out of sight. Such concerns motivate a strong
desire for plan robustness, in which the plans contain
enough flexibility to continue execution of the plan under a
wide variety of execution outcomes. [ixecuting a flexible
plan is not easy, and draws on many capabilities of our
“Smart” I; XI;C.

Plan Ewwu(ion We now describe the plan execu t ion
capability of the executive in more detail. The planner
represents spacecraft activity as a set of concurrent
subsystems. Each independent component of a subsystem
is conceptualized as a state variable, which can take on a
series of different behaviors over time. A plan consists cf
one timeline for each state variable. Each timeline contains
a sequence of constraints on the behavior of the state-
variable. A token is a data structure which represents one
part of a sequence on a timelinc. A token has information
about the desired behavior throughout the duration of the
token, and also flexible constraints on when the token can
start and finish. Lastly, the plan contains constraints to
coordinate behavior across tokens on different timelines,
called cornpatability constraints. An example of a
compatibility constraint is one which says that a “take-
picture” token may only be executed within the window
during which the corresponding “keep-pointing-at-target”
token is activated.

The EXEC is a multi-threaded process that is capable cf
asynchronously executing activities in parallel. EXEC has
one thread for each timeline in a plan, and a procedure,
called the token definition, for each type of token contained
in the plan. A token definition procedure contains a
precondition that must be met before the activity can start, a
postcondition that must be met before the activity can
finish, and a body which describes how the procedure is
actually executed. To execute a plan, EXEC activates on the
corresponding thread for each timeline the procedure
corresponding to the first token on that timeline. EXEC
tracks the status of all tokens in a data structure called an
agenda. When a new token is able to start (because the
previous token has finished and all other constraints are
satisfied), EXEC terminates the previous token procedure
and transitions to the next one. For example, once the
token for turning to a target has completed, the token fm
constantly pointing at the target can then be activated, This
enables the “take-picture” token on the camera timeline to
be activated. Only when the picture activity has finished
will the f:Xl;C terminate the “keep pointing at target” token
and transition to the token for turning to the next target
attitude. The tokens executed by the [<AX F.xecutive art
summarized in Appendix A.

In more detail, plan execution is achieved through the
following cycle, as shown in J:igure 6:

p 9 1214197

Figure 6. Executive Plan Execution Cycle

1. EXEC receives a new plan from the planner “and updates
the plan executicm agenda.

2. EXFC chooses a new task (usually arising from a plan-
Ievel token) on the agenda that is ready for execution.

3. EXtZ decomposes the task into a series of sub-tasks
based on task definition models and current execution
context. Sub-tasks are recursively decomposed down to the
level ofprirnitives. EXEC invokes MIR as a recovery expert
to achieve tasks that have failed.

4. EXEC begins to execute a primitive task, for example by
sending a command to the FSW or waiting until a
condition becomes true.

5. (Not shown) FSW processes the command by making a
change in a software parameter or device state. The monitor
for the affected FSW component registers the change in
low-level sensor data and sends Ml a new abstracted value
for the state of the aflected components. MI compares the
command to the observations, infers the most likely actual
nominal or failure mode of each component, and sends an
update to EXEC describing the changes in any modes d
interest to EXEC.

6. [:.X EK compares the feedback from external events, such
as the Ml mode updates, to the conditions specified in its
task models to determine whether the command executed
successfully. If so, it proceeds to take further steps to
complete the high-level token. If the token is finished,
EXEC updates its agenda and continues the cycle.

t lard command execution fai lures may Rqllke the
modification of the schedule in which case the executive will
coordinate the actions needed to keep the spacecraft in a
“standby mode’” and request the generation of a new
schedule from the planner.

Archi(ec[tire-.v l{p[)or[titnelitws Most timelines (and hence
tokens) represent the activity of spacecratl subsystems
external to the RA. t lowcver, the RA also contains two

p 10

[imelines used to support architectural features. First, the
I’l,ANN[;[{-I’I{ OC[;SSING timcline describes the activity cf
the planner. The pI,AN.NI;XT-I IOI{IZON token for this
timeline corresponds to a state in which the planner is
generating a new plan. l;XIiC executes this token by
generating a plan request, sending it ofi to the planner, and
then incorporating the new plan into the current execution
context. I’his supports the model of planning with
multiple horizons described above. The SCRIPT-NEXT-
1 [OR17.ON token for this tirneline is similar, except it
directs EX[iC to load and execute the plan defined in a file
previously up-linked from ground. In this way ground
controllers can also support back-to-back plans. This also
sLIpports the LISC of the automated planner running in closed-
loop fashion either from the ground or on-board the
splcecrall, hence supporting easy migration of planning
capability from human-based, to automatic ground-based, to
autonomous on-board planning.

Second, the liXEC-ACTIVITY timeline represents low-level
activities that l:XI:C will perform that are lower-level than
the tokens managed by the on-board planner. To execute
the hXEC-AC’I’lVITY token, which takes a filename as an
argument, EXEC simply loads and executes the referenced
file. The tile can contain arbitrary Lisp code, including any
commands executable on the spacecraft. This timeline ean
be used to run EXEC in a mode corresponding to a
traditional sequencer, by sending up a plan that contains
only a sequence of l: XEC-ACTIVITY tokens, each with
low-level commands defined in a file. }lowever, since this
timeline runs concurrently with all the timelines defined h
the planner, it also enables ground operators to require
certain low-level activities to be inserted into whatever high-
lcwl plan is generated autonomously. IIXF.C also SUppOI_K
use of the IIXf~C-AC’t’IVIT’Y procedure as an immediate
function invocable by ground controllers. 1 Ience, even in
the middle of an autonomous plan execution, or in standby
mode, ground operators can ask l:XEC to run arbitrary low-
Ievel commands from a tile and these can be tied to events
rather than being linked to prespecified clock times. For the
complete list of RAX timelines and tokens, see Appendix A.

Sutnrrmry of [hecuti~v Capobi[ilies Demonstrated in R A X
We now sumruarize how the EXEC capabilities described
above are demonstrated within the RAX scenarios.

First, I:X[:C demonstrates the multi-level commanding,
allowing ground operators to specify low-level commands to
the hardware as part of a sequence, to generate plans fmm
ground, or to request and execute plans generated on-board
the spacecraft. The low-level commanding and ground-
based planning are demonstrated in Phase One of the RAX
experiment, in which a plan is up-linked from the ground
which contains both high-level activities (like turning to a
target) and low-level activities (using the [; Xf;C-AC’l’lVI’t’Y
tokens to simulate the injection of various faults, and to turn
PASM on and oft).

Second, I;XI:C demonstrates plan request generation and
execution. I’his is demonstrated from a currently executing
plan where nothing has changed (nominal scenario), from a
currcntty executing plan where a device health token has
been updated (following the MICAS health update), and from

a standby mode. As part of executing a plan phase two,
EXI;C demonstrates a number of important capabilities
involved in token decomposition.

● I;XI; C demonstrates context sensilive behavior in the
management of the ion propulsion system. Before
executing a thrust command, I;XEC requires that lPS is
in standby mode. If it is already in standby mode,
I:XI:C proceeds to the thrusting, otherwise it will put
IPS into the standby mode before proceeding.

● LX fic demonstrates time-driven token durations. For
example, it terminates a thrust segment based on a
timeout, rather than external confirmation.

s EXEC demonstrates evenl-driven token durations, in
which the picture tokens are not allowed to terminate
until the picture has actually finished, turn tokens am
completed only upon receipt of turn-complete messages
from the ACS, and the SEP-T}IRUSTING token is only
completed upon a message from MIR that IPS is indeed
in the thrusting state.

● F,X EC demonstrates goal-orien(ed achievernen! (don’t
achieve things that are already true). Because the
planner is unable to determine how many thrust
segments are necessary to achieve the total desired
thrust, it inserts thrust tokens into the plan which may
not need to be executed. EXEC tracks how much thrust
has been achieved, and only executes thrust tokens (and
associated turns) for so long as thrust is actually
necessary.

● I;XF,C demonstrates the coordination of activity details
across subsystems that are below the level of visibility
of the planner. There is a constraint that ACS be in
thrust-vector-control (’I’VC) rnodc shortly affer lPS has
started thrusting. When EXEC commands IPS into
thrusting mode, it also sends the command to ACS to
enter TVC mode based on its own lower-level domain
knowledge. Similarly, EXEC puts ACS back into
Reaction Control System (RCS) control mode upon
termination of a thrusting activity.

Third, EXEC demonstrates the ability to maintain required
properties in the face of failures. In the thruster failure
scenario, EXEC learns from an MIR state update that the
current thruster mode is faulty. It invokes MIR with a
recovery request and then executes MlR’s recommendation to
change to a degraded thruster control mode.

Fourth, EXEC demonstrates the ability to recognize plan
failure, abort the plan, enter standby mode, and request and
execute a replan. This occurs in the M[CAS failure scenario,
in which I;XEC learns from MIR that MICAS is stuck on and
cannot be turned off. EXI;C requests a recovery from MI R so
that it can turn h41CAS ofl, but since there is no way to fix
this problem MIR so informs l; X[;C. Since the plan
requires MICAS to be off, I{XEC aborts the plan, terminating
a thrusting segment if necessary. It then enters a degraded
standby mode, in which it leaves MICAS on despite the
usual desire to turn off all unnecessary devices in standby
mode, and requests a plan for the planner. In its plan
request, I:XI;C informs the planner that hlICAS is stuck on.
later, in executing the new plan, ground finds a way to tix

pll

MICAS and informs MIR of this fact, When EXEC le~s
from MIR that MICAS can now be shut off, this new
information does not cause EXl;C to abandon the plan, since
the planner did not require MICAS to be broken. tlowever,
the next time f;XEC asks for a plan, it informs the planner
about the restored health of MICAS, so that the planner can
now plan to switch MICAS off when desired, EXEC also
demonstrates the ability to temlinate plans based on an
immediate command from the ground, in which case it
enters whichever standby mode the command specifies.

/mp/emen~a(ion EX1;C is implemented on top of Execution
Support Language (ESL) [5], which in turn is implemented
using multi-threaded Common LISP. The internal EXEC
code is designed in a modular, layered fashion so that
individual modules can be designed and tested
independently. Individual device knowledge for RAX is
implemented based on EXEC’S library of generic device
management routines, to support addition of new devices
and reuse of the software on future missions.

More details about EXEC can be found in References [6, 7.
and 8].

Diagnosis and Repair

We refer to the Diagnosis and Repair engine of the Remote
Agent as Ml R, for Mode Identification and Reconfiguration,
which emphasizes the model-based diagnosis and control
flavor of the system. MIR eavesdrops on commands that m
sent to the on-board hardware managers by the EXEC. As
each command is executed, MIR receives observations from
spacecraft sensors, abstracted by monitors in lower-level
device managers for the Attitude Control Subsystem (ACS),
BUS Controller, and so on. MIR combines these commands
and observations with declarative models of the spacecraft’s
components to determine the current state of the system and
report it to the Exec. A very simple example is shown
schematically in Figure 7. in the nominal case, MIR merely
confirms that the commands had the expected effect on
spacecraft state. In case of failure, MIR diagnoses the failure
and the current state of the spacecraft and provides a recovery
recommendation. A single set of models and algorithms art
exploited for command confirmation, diagnosis and
recovery.

12/4/97

4. Spacecraft State 5. Recovesy Actions
e.~. Switch is still cm e.g. Retry switch command

database engine

Conflict-directed
3. Qualitative data

;
Best first search ~

e.g. Current is non-zero

I. Commands given to 2. Quantitative data from
spacecraft systems spacecraft sensors
e.g. Turn off switch e.g. Current = 0.3 amps

Figure 7. Information Flow in MIR

The RAX mission scenario demonstrates the following MIR
capabilities: state identification throughout the experiment,
diagnosis of sensor failure F 1, diagnosis and recove~
recommendations for device failures F2-F4, and overriding
ofa MIR diagnosis via a ground command.

F 1 illustrates MlR’s ability to disambiguate between a
sensor failure and failure of the device being sensed. MIR
combines power distribution models with the sensed
nominal current draw and communication status of devices
to conchlde that the power switch must be on and that a
switch sensor failure, though unlikely, has occurred.

Failures F’2-F4 are diagnosed in a similar fashion and
include the possibility of recovery. F2 focuses on repeated
attempts to recover a camera switch until it is deemed
permanently stuck. F3 illustrates successful recovery cf
communication with a device by resetting its remote
terminal (RT). In F4, given only an attitude error and
models of the spacecraft dynamics, MIR infers that one &
two thruster valves is stuck closed. MIK is then able to
recommend that no matter which one of the two valves is
stuck, switching ACS control modes will mitigate the
problem.

Since we cannot depend on failures F I-F4 occurring during
the experiment, failures will be simulated by injecting false
monitor readings consistent with the failures. The RAX will
be expected to take the appropriate corrective actions,
though none are necessary. Injecting simulated failures may
seem senseless. However, in lieu ofa guaranteed real failure,
it provides greater confidence that the system is flight ready
and will demonstrate that when the RA reacts to a failure the
ground controllers will be able to observe, interpret, and, if
necessary, override the actions it has taken. While
simulations are necessary for demonstration, the RAX is
fully responsible for responding to real faihlres within its
limited scope occurring during the experiment. This raises
an additional challenge regarding how the RAX will avoid
conflicts with the flight software fault protection mechanism
(FP), since both may be react to the same failure. Rather

than negotiate a complex resolution strategy, the RAX was
designed with a narrower notion of nominal operation than
the FP (by tuning monitors appropriately), thus avoiding
the conflict altogether. When the RAX is operational, it
should always respond to and mitigate faults within its
mandate before the FP monitors are triggered. If the RAX
fails to do so, the FP will terminate the RAX upon being
triggered.

The Mill component of the RA architecture, embodied in a
system called Livingstone, consists of two parts: nlode
identification (MI) and mode reconfiguration (MR). Ml is
responsible for identifying the current operating or failure
mode of each component in the spacecraft. Following a
component failure, MR is responsible for suggesting
reconfiguration actions that restore the spacecraft to a
configuration that achieves all current goals as required by
the planner and executive. Livingstone can be viewed as a
discrete model-based controller in which MI provides the
sensing component and M R provides the actuation
component. MI’s mode inference allows the executive to
reason about the state of the spacecratl in terms cf
component modes, rather than in terms of low level sensor
values, while MR supports the run-time generation of novel
reconfiguration actions.

Livingston uses algorithms adapted from model-based
diagnosis [9, 10] to provide the above functions. The key
idea underlying model-based diagnosis is that a
combination of component modes is a possible description
of the current state of the spacecraft only if the set of models
associated with these modes is consistent with the observed
sensor values. Following de Kleer and Williams [1 1], Ml
uses a conflict directed best-first search to find the most
likely combination of component modes consistent with the
observations. Analogously, MR uses the same search to
find the least-cost combination of commands that achieve
the desired goals in the next state. Furthermore, both Ml
and MR use the same system model to perform their
function. The combination of a single search algorithm
with a single model, and the process of exercising these
through multiple uses, contributes significantly to the
robustness of the complete system. Note that this
methodology is independent of the actual set of available
sensors and commands. Furthermore, it does not require
that all aspects of the spacecraft state are directly observable,
providing an elegant solution to the problem of limited
observability.

l’he use of model-based diagnosis algorithnls inln~ediately
provides Livingston with a number of additional features.
First, the search algorithms are solmd and complete,

providing a guarantee of coverage with respect to the models
used. Second, the model building methodology is
modular, which simplifies model construction and
maintenance, and supports reuse. “1’bird, the algorithms
extend smoothly to handling multiple faults and recoveries
that involve multiple commands. Fourth, while the
algorithms do not require explicit fault models for each
component, they can easily exploit available fault models to
find likely failures and possible recoveries.

[2/4197

Livingston extends the basic ideas of model-based
diagnosis by modeling each component as a finite state
machine, and the whole spacecratl as a set of concurrent,
synchronous state machines. Model ing the spacecratl as a
concurrent machine allows Livingston to effectively track
concurrent state changes caused either by executive
commands or component failures. An important feature is
that the behavior of each component state or mode is
captured using abstract, or qualitative, models [12, 13].
These models describe qualities of the spacecraft’s structure
or behavior without the detail needed for precise numerical
prediction, making abstract models much easier to acquire
and verify than quantitative engineering models. Examples
of qualities captured are the power, data and hydraulic
connectivity of spacecraft components and the directions in
which each thruster provides torque. While such models
cannot quantify how the spacecmtl would perform with a
failed thruster for example, they can infer which thrusters am
failed given only the signs of the errors in spacecmtl
orientation. Such inferences are robust since small changes
in the underlying parameters do not afkt the abstract
behavior of the spacecraft. In addition, abstract models can
be reduced to a set of clauses in propositional ,Iogic. This
form allows behavior prediction to take place via unit
propagation, a restricted and very eflicient inference
procedure.

hfl R’s abstract view of the spacecratl is supported by a set
of fault protection monitors which classify spacecratl sensor
output into discrete ranges (e.g. high, low nominal) or

symptoms (e.g. excessive attitude error). One goal of the
RAX was to make basic monitoring capability inexpensive
so that the scope of monitoring is driven from a system
engineering analysis instead of being constrained by software
development concerns. To achieve this, monitors arE
specified as a dataflow schema of feature extraction and
symptom detection operators for reliably detecting and
discriminating between classes of sensor behavior. Second,
the software architecture for sensor monitoring is described
using domain-specific software templates from which code is
generated, Finally, all symptom detection algorithms are
specified as restricted Harel state transition diagrams
reusable throughout the spacecraft. The goals of this
methodology are to reuse symptom-detection algorithms,
reduce the occurrence of errors through automation and
streamline monitor design and test.

Table 3 illustrates the classes of components modeled by
M[R for the EM 1 spacecraft. For each we list the number d
instances in the overall spacecraft model and the modes
(states) the component can occupy. All told the MIR model
represents fifty-seven components of twelve different types,
their behavior, and their interconnections. For ease cf
modeling, MIR allows components and a model describing
their interconnection to be grouped into a module which can
be treated as a unit. Table 4 illustrates the modules created
to model 1)S1. For each we list the number of instances in
the overall spacecraft model and the components or other
modules the module contains.

I Component Class

ion propulsion system
(ips)

E==
Fcurrent sensor

thruster valve

thruster

I rxo~ellant tank

*—
I vehicle dynamics

Table 3. I)S1 }Iardware Modeled as Components in hlIR

in Model I Modes

1
I

Standby, Startup, Steady State Thrusting, Shutdowrn, f?ea)n (lit,
Controller Illww, Unknown

6 Nom inal, Resettablc Iailurc?, Po\twr-cyclable Failure, [Jnkno)t’n

1 TVC, X for Y, Z for Y, A’jor Y Degraded Z for Y Degraded, X’ fbr Y
Failed, Z for Y Failc[i, TI’C [“oiled, Unkno\\’n

12 On, Off, Popped On, l)oppcd Of~ Stuck On, Stl{ck Of~ Unknov$’n

3 Nom inal (reported value = real value), Unkno\vn (values uncon.$trainea)

8 Nom inal, Stuck Closed, Unknow’n

8 Nominal, Unknown
r

1 Nonempt y, Unknown (thruster hydrazirw out or otherwise unavailable)

1 Nom inal, Unkno}vtl

I I Nominal (This is a Qualitative description of force and torque.)

3 I Nominal (Failure considered too fatal and remote to involve in diagnosis.)

p 13 1214/97

Table 4. DS1 Hardware Modeled as Modules in M I R

Module # in Model Subcomponents

power relay 12 I switch, 1 switch sensor

power distribution unit 1 12 relays, 3 power buses, 3 current sensors, i remote terminal

generic rt subsystem 3 1 remote terminal (Models RT for devices MIR does not otherwise model)

ips system 1 1 ips, 1 remote terminal

thruster pallet 4 2 thrusters (X facing and Z facing)

reaction control system 1 4 thruster pallets

pasm subsystem 1 1 remote terminal

It is important to note that the MIR models are not and failure modes is consistent with the unknown failure

required to be explicit or complete with respect to the mode. In this way, MIR can infer that a component has

actual physical components. Often models do not
failed, though the failure was not foreseen or was simply

explicitly represent the cause for a given behavior in terms letl unmodeled because no recovery is possible.

of a component’s physical structure. For example, there By modeling only to the level of detail required to
are numerous causes for a stuck switch: the driver has make relevant distinctions in diagnosis (distinctions that
failed, excessive current has welded it shut, and so on. If prescribe different recoveries or different operation of the
the observable behavior and recovey for all chuses of a system) we can describe a system with qualitative
stuck switch are the same, MIR need not closely model “common-sense” models which are compact and quite
the physical structure responsible for these tine easily written. Consider the stylized model fragment in
distinctions. Models m always incomplete in that they Table 5 which describes some of the possible modes of a
have an explicit unknown failure mode. Any component remote terminal.
behavior which is inconsistent with all known nominal

Table S. MIR Model Fragment for Remote Terminal

device remote- terminal
power_. input . rt_switch - >power_output
comma nd_input = bus_contz-ol 1 e~-- >cornmand_output

mode nomi nal :
if (power_ input . = OFF’) comn.. status = NO_COMMUNCIATION
if (power_ input . . ON) cornn...status = COMMUNCIATION

mode reset table-failure:
probability = LIKELY
comm_staLus = NO_COMMUNCIA’I’ION

if (command_input == RESET) next mode = nominal

mode powercyclable-failure:
probability = I,ESS-I,IKELY
comm_staLus = NO_COMMUNCIATION

if (power_input . . OFF) next mode . nomina]

mode unknown:
probability = UNLIKELY
/’ Note there is no model, so any unmodeled behavior is consistent */

p 14

I’his single model describes how an remote terminal’s
outputs ~ehave nominally and during failure, what
connections to c)ther devices influence its behavior, and the
expected efiwt of recovery actions such as RESET if the
device is in the mode under consideration. If a remote
terminal is not communicating, MIR will consider that it
may no longer be nominal or it may not be receiving power
input. When investigating the latter, MIR will generate a
similar set of explanations for why a switch might fail to
provide power given its model and connections. Additional
technical details about Livingstone can be found in [14].

7. INT EGR AT I NG RAX INTO ‘I’l IE ~;l/[Gf IT SYSI’LM

Integrating RAX with flight software is challenging because
RAX represents a significant departure from traditional flight
software. The differences are not only technical as described
previously, but also practical and cultural. From the view
of flight software these differences may manifest themselves
in a number of ways—from uneasiness within the flight
software developers to an actual increased risk in the flight
software product. Fortunately, none of these differences nor
their impacts are inherent lim itat ions to RAX. technology
and thus, with sensitivity to the issues, RAX is successful
as a high-level flight software control architecture.

Perhaps the single largest practical difference that RAX
presents arises from the fact the RAX is implemented in
Common Lisp whereas previous missions, and also the
realtime software with which RAX interacts, use lower-level
languages like C. Many issues arise some of which are bet
others of which are myth; however, the most significant
issue is that interfaces between RAX and FSW might need
to be specified and shared in either or both of two languages.

The success of RAX required that these issues be addressed
in a way that would allow traditional flight projects to be
comfortable with [{AX technology and also to mitigate the
risk introduced by the new technology. The result is the
“RAX Manager” flight soflware component.

The RAX Manager presents the RAX technology to the
flight sotlware with a traditional flight soflware interface.
Like hardware device managers, the implementation behind
the interface is of no concern once the interface is correct, the
functionality is in place and the required resources am
allocated.

The [<AX Manager serves several different functions over the
life cycle of the project.

I) At design time, the RAX Manager specifies the interface
agreements between RAX and the flight project. T h e

interfaces includes all of the following:

● Telemetry and Logging

● Ground-based Command Dictionaries

● Computational Resources (CPU Fraction, Memory
Rcquirernents, ctc)

● I:SW messaging (function calling) interface

● Flight Rules

● Fault Protection responses

● Timing within the Mission Plan.

2) At implementation time, the RAX Manager shields the
existence of CommonLisp in the RAX implementation ~m
the flight soflware by presenting a “C” interface externally.
Producing that interface and performing any necessary
conversions to the RAX implementation language are the
full responsibility of the RAX developers. The process was
simplified dramatically by a RAX developed software
package known as CL.ASII (“C and Lisp Abstract Syntax
Ilarmony”). CLASf I defines a language for use in declaring
a message passing interfaces and provides a preprocessor
program (i.e. a compiler) to translate the declared interfaces
to “C” header files, “C’” code files, and Lisp code. CLASH
also runs inside RAX and hides all aspects of the inter-
module communication issues. Thus, there is one uniform
interface for internal message passing among RAX
components, external message passing between RAX and C
modules, and even telemetry packet encoding. Simple
compile-time declarations specify the interface and the
location (internal or external) of the code implementing the
corresponding interface.

3) At FSW testing time, the RAX Manager decouples RAX
from the flight software and thus allows the launch-ready
sotlware to be tested in anticipation of the launch date and
the RAX sotlware to be tested in anticipation of the (later)
experiment start date. The RAX testing can thus proceed
after the launch much as many ground-generated traditional
sequences are validated post-launch. The RAX Manager
however, as a tiny subset of the RAX code, can be tested
relatively early, on the flight software schedule.

4) At runtime, the KAX Manager mediates the message
passing between RAX and flight soflwarc. There are two
aspects to this. This first is that the RAX manager must
both initiate and terminate the RAX experiment: the
initiation happens as commanded from the ground; the
termination as a result of either a ground command or an
unanticipated fault having found its way into the non-RAX
fault-protect ion subsystem. The second aspect is that the
RAX Manager must discard any messages destined for RAX
during those times when the RAX is not operational. For
1)s1, [{AX is a relatively short-lived technology
demonstration experiment, so the dominant runtime activity
of the [<AX Manager will be to simply discard any incoming
messages. Of course, for the time betiveen initiation and
termination the [{AX Manager passes most messages
between RAX and flight software.

T’hrough these four functions, the [{AX Manager spans the
entire flight project Ii fccycle and in so doing allows the RAX
to address and mitigate the unique risks that arise in each
phase.

8. ‘[’I{ S’I’IN(; RAX

Our approach to testing and validating the RAX not only
exploits standard soflwarc testing practice, but also goes

p 15

beyond it in a number of key areas. I’hc foundation of a
reliable, high quality system is laid with the design and
specification of the interfaces between the ditlim.mt
subsystems. l-o this end, we have formalized all RAX
interfaces, both between RAX and the rest of the flight
so flware and between the components of UAX, using
CLAStI. The use of CLASH has essentially eliminated a
whole class of essentially syntactic errors such as
discrepancies in the index used to identify a switch in am
array, out of range values, and inconsistent interpretations d
interface structures. Formalizing these interfaces has allowed
LIS to focus our testing effort on finding and eliminating
more subtle semantic errors.

RAX Sjt$[em-level Iesling

Our principal approach to testing the RAX at the system
level was the scenario-based testing of requirements.
Testing of individual RAX modules used both scerrario-
based testing methods and a variety of other methods
discussed later in this section. We started scenario-based
testing by identifying the set of system-level requirements to
be met by the RAX. We then designed a set of test
scenarios, ensuring that each requirement is adequately
tested by one or more of these scenarios. Scenario design
started with the development of the 12 hour and 6 day
scenarios to be demonstrated in flight. These scenarios
include nominal operation, planning and executing back-to-
back plans, and a variety of failure scenarios. Additional
scenarios were developed as variations on this basic set cf
scenarios. Variations were generated both for nom inal
execution (e.g., varying the number of OpNav image goals
per window, varying the available power from the solar
arrays, and varying the slew times for turns) and for failures
(e.g., varying the location, time, and number of failures).

An important aspect of the above approach is to have people
intimately familiar with spacecratl and mission develop the
scenario variations. This ensures that the different scenarios
capture all likely variations in the nominal scenarios, and all
credible failures. Furthermore, such people can identify
situations that are likely to be challenging for the RAX, e.g.,
time or resource limited situations, critical sequences
requiring precise timing, and failures that are hard to
diagnose and recover from. Mission and systems engineers
are in the best position to develop scenario variations.
}Iowevcr, in order to avoid excessively taxing the systems
engineer’s time, our approach has been to have
knowledgeable members of the RAX team develop the
scenario variations, and have these variations be reviewed by
DS- 1 systems engineers. The limited scope of the RAX
makes this approach feasible.

I’his basic approach to testing generalizes naturally to
system-level testing ofa Remote Agent being deployed for a
complete mission. In particular, each mission usually
consists of a number of clitRerent phases characterized by
nominal scenarios. For example, the phases of the DS- I
mission include launch, ballistic cruise, cruise under ion
thrusting, asteroid and cornet flybys, and various validation
experiments. Nominal scenarios for each of these phases c(arr
bc developed and tested. Systems engineers can then usc

these nominal scenarios to develop scenario variations,
including failure scenarios, to build confidence that the
[{emote Agent can ctTcctively early out all phases of the
mission under a variety of difierent situations. The focus
provided by the nominal scenario of each phase helps keep
the system-level testing of the Remote Agent manageable.

Scenario-based testing of RAX is augmented with a variety
of tools and processes to ensure effective testing.
Specifically, we have developed a set of flight sotlware and
hardware simulators that support eflective RAX testing prior
to integration with the rest of the flight software. We have
also developed tools for simulated time “warping”, which
allows the RAX and its associated simulators to skip over
periods of time in which the RAX is idle. This allows us to
test scenarios lasting for days or weeks of simulated time in
a few minutes or hours of real time. Whenever possible, we
have attempted to convert al I tests into automatic regression
tests requiring no manual intervention. This allows us to
automatically run a battery of tests overnight, to ensure that
every major release of the RAX passes all regression tests.
Finally, we have installed a formal bug tracking system
using the GNU GNATS system and a process for its use.
Whenever a code error is discovered, it is logged in
GNATS. Once the error is corrected, a regression test is
created that fails before the code is corrected but passes with
the corrected code. This regression test is then added to the
set of regression tests.

In addition to the system-level testing described above, we
also do extensive module feature tests on each of the RAX
modules. These are described below.

[’[cltltler/sciIc’dltler nlociulefeature testing

The main requirements on the planner is that it produce a
valid plan for all valid plan requests from the Executive and
all legal behaviors of the plan experts, and successfully
update the mission profile in response to an profile update
request. The latter requirement can be tested directly with
automated scenario-based testing.

I’hc first requirement is some~vhat harder to test. For any
partial plan provided to the planner and any set of plan
expert behaviors, the planner must either produce a valid
plan before its computational resource bounds are exceeded
(times out), or report that no plan can be generated within
those bounds. For a plan to be valid, it must be consistent
with the plan model. This requirement is tested by
extensive scenario-based testing. The plans generated in
each scenario arc tested for correctness against the plan
model by an automated constraint checker, and manual spot
checking of plans. The constraint checker converts the plan
model into a set of logical constraints. Each plan is checked
to ensure that all of the constraints are met. ‘1’hc constraint
checlicr also performs a covcragc analysis to ensure that
every rule in the plan model has been exercised by an
adequate rrumbcr of plans. Manual spot checking is done by
displaying the plan as a modified GANTT chart with a plan
viewing tool.

P 16 1214/97

Even if a plan is valid with respect to the plan model, the
plan model itself may be inco~rect. The model may not
express the knowledge that the model developer intended, or
the developer may not have acquired the correct knowledge
from the experts. The plan model must be verified with
respect to the knowledge of appropriate experts. This is
done by encoding the plan model into English specifications
and confirming them with human experts. Another source cf
expert knowledge arc the flight rules. These are English
rules that state what actions can and cannot be perfomled on
the spacecratl For example, “never fire the IPS engines
while taking optical navigation images”. I’hese rules can be
converted into logical expressions and added to the set d
constraints checked by the constraint checker. As a final test,
a small representative set of plans are run through the
executive to ensure that they execute correctly and that the
spacecraft exhibits correct behavior.

Executive rnodulefeuture testing

The modular, multi-level structure of the Executive (see
Section 6) enables the Executive sub-modules to be tested
independently and permits the Executive to be adapted to
new missions with a minimal amount of change, primarily
at the external devices level. Given the limited scope of the
RAX, testing the bigher levels of the Executive (i.e., the
external device level and the top level control) is relatively
straightforward. This gives us an opportunity to effectively
test the lower levels of the Executive, providing a well-
tested foundation for future missions. If it were necessary to
redevelop and test the entire Executive for each mission, the
high development cost could very well eliminate its
selection on future missions.

As previously discussed, we use automatic regression tests
whenever possible to test the Executive. Once such a test is
started, manual intervention is not required and the test
returns a pass or fail value. To facilitate this process, a
simulator is used that was designed to check system-level
properties and constraints while the Executive is running.
For example, one constraint is that the MICAS camera is not
to take a picture while the spacecratl is turning. Given this
constraint, the simulator generates an error that will cause a
test to fail if the simulated spacecraft is turning when it
receives a command from the Executive to take a picture.

Unfortunately, not all testing can be done automatically.
Determining if the Executive really did what it was
supposed to do in certain situations often requires an expert
to review the log generated by the Executive. This can be
time consuming and errors may be overlooked. In order to
address this problem, a visualization tool for validating
Executive plan execution, called Planvicw, was developed at
CMU by Simmons and Whelan [15]. Planview provides the
user an overall view of all the executing tirnelines,
highlights execution flaws, and allows the user to zoom in
on an individual token showing its values and constraints.

Finally, a formal analysis approach is used to check if the
Executive code violates design specifications [16]. In this
approach, we create a formal model that characterizes the
abstract behavior of critical Executive constructs (for

example, those dealing with resource management). We also
formalize design requirements that should be enforced
whenever the constructs are used (for example, aborted
activities must always give up any resources that were
allocated to them). Then we run this abstract model
through a formal model checker, which either proves that the
formal model satisfies the design requirements or generates
an example scenario where the requirement would be
violated. Using this approach, errors in the Executive code
were discovered that would have been very diftlcult to
discover using the test methods described above. A major
drawback of this approach is that it is time-consuming and
has only been applied to a small part of the Executive.
Decreasing the time and expertise required to perform this
analysis is an ongoing research area,

Diagnosis and Repair module featlire testing

MI R has four major categories of testable requirements: it
must provide command contimlation to Exec, it must
diagnose a set of failures, it must provide recoveries fm
those failures, and it must meet certain performance
requirements. The majority of MIR testing is scenario based
testing on a combination of simulators and real hardware. A
scenario consisting of a sequence of spacecratl commands
and resulting monitor values (real or simulated) is processed
by MIR. At each point in the scenario, MlR’s model of the
spacecratl’s state must agree with the spacecraft state
predicted by the scenario commands. During the scenario, a
failure is injected into the spacecmfl simulation or hardware
testbed, causing a set of monitor values to be reported to
MIR. hlIR’s diagnosis and recovery are then checked
against the injected failure and performance metrics are
taken.

MIR testing scenarios derive from three sources. The first is
devious human testers. We have developed tools to allow a
user to easily write a scenario consisting of RAX command
sequences, failure injections and, when not running on the
hardware testbed, the expected monitor values. lIuman
analysis of MIR’s \veaknesses provides the most stressful
but most expensive test scenarios for the system. The
second source is brute force automatic scenario generation.
The RAX MIR models are small enough that many classes
of tests can be performed exhaustively given a set cf
reasonable limiting assumptions and a fast spacecratl
simulator. For example, given the simplicity of MIR’s
models, each failure can be injected in each combination cf
modes the model can achieve and automatically checked fw
correct diagnosis and recovery. The third source is informed
automatic scenario generation. M [l{ models the spacecndl
by modeling each component as a finite state automaton. A
large amount of work has been done in the verification
community in verifying that a finite automata (here the MIR
models) correctly models a physical or software system (here
the spacccrall simulator or hardware). In addition, a large
amount of work has been done in the model-based
diagnostics community in cieriving tests that systematically
sensitize each subsystcm of an assembled system (here the
simulator or hardware) and determine that diverge from their
models. We are drawing on this work to build automatic
test generators which will provide near-minimal Icngth tests

p 17

which will determine if a MIR model agrees with the
hardware or simulator it models.

9. FLJTURF; woItK

A number of desirable Remote Agent features are planned fm
future Remote Agents that will not be part of the DS I RA.
These enhancements wil l further increase mission
robustness, refine diagnostic capabilities, and simplify the
process of representing and integrating knowledge
throughout the sotlware.

In our discussion of mission robustness, we discussed
flexible planning and recovery capabilities. These
capabilities will not help in cases where some preventative
or preparatory action needed to be taken in the past to enable
recoveries in the current situation. For example, if the
primary engine breaks, the system may only be able to
switch to the backup engine if it has been warmed up.
Future Remote Agents will have the capability to anticipate
such possible failures, or even opportunities, and to then
build plans that provide the necessary resources so the
system is prepared for many possible futures. A related
capability in this vein is for the executive to utiderstand the
priorities in the plan, so that it can abandon individual tasks
or threads of activity without failing the entire plan. This
will enable hig,h-priority activities to be completed even if
low-priority activities fail.

In our discussion of diagnosis, we pointed out that the MIR
system makes new inferences every time an action is taken
or a new observation is made. In the event of failures, it
wil I generate recoveries that may improve the sit uat ion.
However, sometimes these actions taken during normal
execution or even recovery will not present the right
information to isolate the fault to an optimal level of detail.
Our future work will develop methods for active testing, in
which the system will conduct tests whose sole purpose is
to help it improve its understanding of the state of the
spacecraft. Examples of this capability include turning the
spacecratl to see if a gyro is measuring turn rates correctly,
and turning selected devices on and off to detect shorts.

In terms of knowledge engineering, we discussed how the
various reasoning engines in the RA use different
representations of knowledge. In many ways this is a
necessary and useful feature, as it allows the planner to
reason at a more abstract level than the executive, and the
diagnosis system to reason at a more detailed level. While
heterogeneous representations have a number of benefits,
they also raise some difficulties. Most significant of these
are the possibility for models to diverge rather than
converge, and the need to cluplicate knowledge
representation efforts. Ideally, we would like to head toward
an increasingly unified representation of the spacecraft, but
\ve intend to do so always generalizing from powerful
models capable of handling the complexities of our rcal-
world domain.

Many of these tcchno[ogy advances arc current Iy targeted fa
future Deep Space Missions of the New Millennium
Program. Deep Space ‘1’hrce is a three spacecmtl separated

p 18

optical interferometer and Deep Space Four is a Comet
nucleus Sample Return mission. Both are slated fm
launches in the early years of the new millennium.

10. ACKNO\VI,EI>GMt; NIS

The work in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology under
contract with the National Aeronautics and Space
Administration and at the National Aeronautics and Space
Administration’s Ames Research Center.

The authors acknowledge t}te invaluable contributions of
Guy K. Man and Robert D. Rasmussen for their work in
defining the vision for spacecraft autonomy that evolved into
this effort.

The Authors would also l ike to acknowledge the
contributions of Guy K. Man, Richard Doyle, and Kane
Casani of JPL, Gregg Swietek, Keith Swanson, and Ken
Ford of NASA Ames, and Mel Montemerlo of NASA
Headquarters for their leadership is seeing the necessity and
possibility for advances in the area of spacecmfl autonomy
and their insight in recommending and supporting the
approach that we took.

In addition to the authors, the early defining work on the
Deep Space One Remote Agent was accomplished through
the efforts of Erann Gat and Steve Chien of JPL and Michael
Wagner, Scott Sawyer, and Hans Thomas of NASA Ames.

. .

A P P E N D I X A

Timelines and their respective tokens by Module (EXIK’S perspective).

JvIOWIJ2 TIMEI,INE 3QKEN DESCRIPTION

ACS Spacecraft Attitude constant_ pointing_on-_sun Point vector at Target, Solar Panels at Sun

transitional_ pointing_on_sun Turn vector to Target, Solar Panels at Sun.

poke__prin~aV_inertial_vector Small attitude change.

RCS_lIealth rcs_available Maintain information on thruster status.

RCS_OK maintain rcs Set and maintain desired RCS mode.

MICAS MICAS_Actions micas_ take_op_nav_inlage Take a set of navigation pictures.
(Camera)

Ml CAS_Mode micas off Keep MICAS off.—
nlicas_ready Keep MICAS on.

nlicas_tuming_on Turn MICAS off.

nlicas_tuming_off Turn MICAS on.

MICAS_Health n~icas_%vailability Ensure MICAS is available for use.

Op-Nav Obs_Window obs_w indow_op_n av Wait for a specified duration.

Nav_Processing nav~lm__prep Send message to prepare navigation plan.

PASM PASM Available pasnl_monitor Monitor the PASM switch.

SEP SEP sep_standby Achieve and maintain IPS standby state.

sep_starting_up Achieve and maintain lPS start-up.

sep_thrusting Maintain a thrust level.

sep_shutting_down Stop thrusting and go to standby state.

SEI’_Tin~e Accum accunlulated_thrust_ time Monitor thrust time accumulated.

SEI’_Schedule thrust_ segnlent Specifics desired thrust level and vector.

SEP_Thrust Timer n~ax_thrust_tinle Set a timer and stop thrusting if time reached.

thrust_ tin~er_idle I’hrust timer is off.

Planner Planner_ Processing planner_.plan_next__horizon Request and get next plan from planner.

script_next_horizon Run the next scripted plan.

General EXEC Activity exec_activity E;xecu[e a low-level sequence file passed as a
parameter.

Process a specified script.LX EC Eval exec_ eval watcher— —

Additional tokens not listed above are used by the Planner as “placeholdcrs” in the tirnclines. These placeholder tokens do
not require l;XE;C to perform any activity.

p 19 1214197

A P P E N D I X 11

Detailed Planner model for SEP

IhrldiM Comme Gn

SEP_Schedule [Goal ldle_Segment SEP_Schedule i s populated by NAV planning
timeline]

expert.

Thrust__ Segment
Thrust_ Segment defines time period with heading and thrust level.
Several sequential segments constitute a schedule. ldle_Segments
needed to pad the timeline to precisely position the thrust segments.

SEP_Thrust Timer Thrust__Timer_Idle Max l’hrust_Time is returned by the NAV planning expert. It
[Goal time~rre]

Max_ Thrust_Time
spec~fies the total burn duration to be achieved in the current planning
horizon.

SEP_Time=Accum Accumulated_Thrust_Time Tracks the amount of time in the plan during which SEP is scheduled
[Internal tlmeline] to thrust. Time accumulation occurs only during SEP_thrust tokens

(see below).

SEP [Executable SEP_Standby SEP is ready but power to the grid is turned off. Tracks the amount cf
timeline] time since SEP was thrusting. Greater the time since last thrusted,

longer the duration of the SE P_ Starting_Up token. FO I 1O W S

SEP_Shutting_Down. Followed by SEP_Starting_Up. Schedule,
appropriate power consumption retrieved from on-board power table.

SEP_Starting_Up Prepares the Xenon tanks to allow thrusting. Duration of this token is
dependent on when SEP was last thrusting and on previous thrust
level. Requires attitude of spacecraft to be kept constant on requested
thrust heading. Follows SEP_Standby. Followed by SEP_Thrusting.
Schedules power consumption retrieved from on-board power table.

SEI’_Thrusting/FIRST SEP engine is actually thrusting immediately after having been started
up. Must be temporally contained in a Thrust_Segment token (see
above) from which it receives requested attitude and thrust level.
Attitude must be kept constant to requested attitude throughout the
token. Communicates its duration to an Accumulated_ Thrust_Time
token to track total accumulation. Follows SE[’_Starting_up.
Followed by either SEP_Thrusting/NEXT or SEP_Shutting_Down.
Communicates requested heading to SE P_Start ing_.Up and
SEP_Shutting__Down (if appropriate). Schedules power consumption
retrieved from power table.

SEP_Thrusting/NEXT SEP engine is continuing to thrust (without having shut down) atler
change of attitude. Fol low’s SEP_Thrusting/NEXT. F’ollowed by
S~lP_~’hrLlsting~EXl’ or SEP_Shutting_Down. A short duration
turn in T’VC mode is requested to change attitude at the very
beginning of the token. Communicate requested heading to
S1;1’ Shutting [)own if appropriate. Other constraints identical to
thos=” of SEF 7’hrustinglFIRST. Schedules power consumption
retrieved from p-ower table.

SEP_Shutting_ Down Turns off SEP. Requires spcecrafi to be kept constant on requested
thrust heading. Schedules power consumption from power table.

p 20

[l] Barney Pen, Scott Sawyer, DougIas E. Bernard, Nicola
Muscettola, and Ben Smith. Mission Operations with an
Autonomous Agent. In Proc. of IEEE Aeronautics (AERO-
98), Aspen, CO, IEEE Press, 1998 (To appear).

[2] R. Pelt, D. E. Bernard, S. A. Chien, E. Gat, N.
Muscettola, P. Nayak, M. D. Wagner, and D. C. Williams,
“A Remote Agent Prototype for Spacecmtl Autonomy,”
SPI13 Proceedings Volume 2810, Denver, CO, 1996.

[3] Muscettola, N. HSTS: In tegrat ing p lanning and
scheduling. In Fox, M., and Zweben, M., eds, Intelligent
Scheduling, Morgan Kaufman,

[4] Muscetto1a, N. , Smith, B. , Chien, S., H-y, C.,
Rabideau, G., Rajan, K,, Yan, D. On-board Planning fw
Autonomous Spacecraft., in Proceedings of the fourth
I n t e r n a t i o n a l S y m p o s i u m o n Artl~cial ~ntelligence,
Robotics and Automation for Space (i-SAIRAS 97), July
1997.

[5] Erann Gat. “ESI,: A language for supporting robust plan
execution in embedded autonomous agents,” Proceedings cf
the AAA1 Fall Symposium on Plan Execution, AAAI
Press, 1996.

[6] Barney Pen, Ed Gamble, Erann Gat, Ron Keesing, Jim
Kurien, Bill Millar, P. Pandurang Nayak, Christian Plaunt,
and E3rian Williams, “A hybrid procedural/deductive
executive for autonomous spacecraft,” In P, Pandurang
Nayak and B. C. Williams, editors, Procs. of the AAAI
Fall Symposium on Model-Directed Autonomous Systems,
AAAI Press, 1997,

[7] B a r n e y P e n , Erann G a t , R o n Kecsing, Nicola
Muscettola, and Ben Smith, “Robust Periodic Planning
and Execution for Autonomous Spacecraft,” In Procs. cf
IJCA1-97, 1997.

[8] Erann Gat and Barney Pen. Abstract Resource
Management in an Unconstrained Plan Execution System.
In Proc. of IEEE Aeronautics (AERO-98), Aspen, CO, IE;EE
Press, 1998 (1’o appear).

[9] J. de Kleer and B. C. Williams, “Diagnosing Multiple
Faults,” Artificial Intelligence, Vol 32, Number 1, 1987.

[IO] J. de Kleer and B. C. Williams, “Diagnosis With
Behavioral Modes,” Proceedings of IJCAI-89, 1989.

[1 1] J. de Kleer and B. C. Williams, “Diagnosis With
Behavioral Modes,” Proceedings of lJCAI-89, 1989.

[13] J. de Klcer and B. C. Williams, Artificial Intelligence,
Volume 51, Elsevier, 1991.

[14] B. C. Williams and P. Nayak, “A Model-based
Approach to Reactive Self-Configuring Systems,”
Proceedings of AAA1-96, 1996.

[15] Reid Simmons and Greg Whelan “Visualization Tools
for Validating Software of Autonomous Spacecraft,” In Proc.
of the Fourth International Symposium on Artificial
Intelligence, Robotics, and Automation for Space (i-
SAIRAS), Tokyo, Japan. 1997.

[16] Klaus Havelund, Michael Lowry, and John Penix.
Formal analysis of a spacecraft controller using SPIN.
Technical report, NASA Ames Research Center, 1997.

[12] D. S. Weld and J. de Kleer, Readings in Qualitative
Reasoning About Physical Systems, Morgan Kaufhlann
Publishers, Inc., San Mateo, California, 1990.

p21 1214/97

BIOGRAPIII[iS

Photo of Douglas E. Bernard

Dr. Douglas E. Bernard received his
[;ngitl~’eritl,v and Mu[honatics f r o m

B.S. in Mechanical
the University of

I’(’;mont, }Iis A{..7. in Mechanical t?ngineering from - MI~’
atd II i.~ Ph. D. in Aeronautics and Astronautics from
,Wanfiwd University tie has participated in c$vlamics
aIIal~l.~ i.~ LItuI attitude control system design for several
spa&craft at JJ’L and Hughes Aircraft, including A ttitucie
cln~i Arti(u[ation Control Subsystem systems engineering
Iea(i f(w the Cassini mission to Sattirn. Currently, Dr.
iternard is group supervisor for the flight system
cnginewing group at JPL and team lead for Remote Agent
c~utotumly technoloo development for the New Millennium
Program.

Gregory A. Dorais received
his B.S. in Management
Information Systems from
Oakland University, and
received both his M. S. and
Ph. D. in Computer Science
from the Universi~ of
Michigan. He has performed
autonomous rover research at
JPL and remote sensing
research at General Motors
Research. [[e i s clirrent~
with Caelutn Research and is

a mctnber of the Remote Agent autonomy team at the NA,7A
Ames Research Center. His research interests include
autonomous systems and tnachine learning.

Chuck Fry is a member of the
technical staff o f Caelum
Researrch Corporation, under
contract to NASA Ames
Research Center’s Infortnation
Sciences Division. Chuck
majored in Infortnation atui
C o m p u t e r .Vcience at the
University of California at
Irvine. His research interests
include computer architecture,
fictional languages, atui the
social implications of the
Internet,

Photo of Ed Gamble

Dr. Id G’atnide is a member of the A~ivance[i A!ultimission
,%fl~~[irc’ 7b,iln(Jo~k’ group at JPL. t[e receive(i h i s
bmll~’l(n ;V lItId tna.vter k in Elcc(ricol Engineering frotn
(l(’l”i. t Iis (ioctorate was akt’arcie(i i n E l e c t r i c a l
10J<qitt<’(’rit](q \ti[il a specialty in A rtificia[Intelligence from
11117 ~ Ili,s it]l<’r<~,st.s have rangeci from lo.~er scattering in

,/i/.\i(jtl /)/[/.~tll~/.s and in critical plu’nomenon, to
({]tll[~llttiliotl[ll Iti.viotz and integration of .Yetlsor}’

it]/fwnt{lti[]}l, [I}ltl to programming lan~ruages and real-time
Sj’.vlc’ttl.$. IILI i.< currently interested in spacecraft software
(It(Ili[cl ture.v ,fi)r reuse and alitonomy.

Boh Kanefiky i.s a Senior Knowledge Engineer in the
C())tlpt(t(lti()tl(ll Sciences Division at NASA Ames
Research Center. }Ie received a B.A. in Forma[Systems
at .Vtauft)rd [Iuiver.fity. IIe designed and wrote several of
the so ftuwre tools used by the RA and DS1 f l ight
soft wore teams, particularly the abstractions for ttlessage-
pa.ssing and Lisp telemetry. IIe recently supported the
hlars Pathfln(ier science operations teatn, delivering an
e.vperitnen t super-resolution itnage processing algorithm
he had helped develop, and writing a web-based sequence
generator jor preparjng I
lander camera.

‘he necessary cotnmands for the

..-
,.-

.latnes Kurien is a Computer
Scientist in the Computational
Sciences Division at NASA Am~
Research Center and is currently
a doctoral candidate at Brown
University. He holds Masters
degrees from Brow’n Universi~
and Rensselaer. He has
contributed to robot navigation
research at Brown and model-
based software environments at
1BA4 Research.

l)r. A’icola Afuscetfola i s a
Senior Computer Scientist at
the Computational scienees
[>ivision of the NASA Ames
Research Center. [ie received
h i s Di~Joma d i Laurea i n
Electrical and Control
Engineering and his Ph. D. in
Computer Science from the
Politectnico di Milano, I taly .
}ie is the principal designer of
the [iSTS planning franle}iork
and is the lead of the on-board

pltitl}l(’r t(’am for the Deep Space 1 Remote Agent
[;.vpl’ritt]<’t][. ! li.~ research interests inclu~ie p lanning,
.Y<’ll~’tii{litl,gf tetnpora[reasoning, constraint propagation,
at “ti~~t] r(~)rc’.sc’}]t[~tiotz.r atui knowledge cotnpilation.

[’11 l).

Dr . Pan(iu rang A’ayak is a
,Venior Computer Scientist at
the Computational Sciences
Division of [he NA,TA Ames
Research Center. lie received
a B, Tech in Computer
.Vcience atui Engin(wring from
the indiatl ins[itute o f
7kchnolo~i, Borniq’, a n d a

Y- Pil. D. i n C’otnputer ,Ycience
f r o m Statf<wli Uni\’cr.fity. /ii.s

(li.<.~c’t[tlliotl, c’ntitlui “A utomat~)<i Modeling o f

I’lli’.vi<wl .Y~s[(’nls”, was an ACM Distingliished Thesis. He
i.~ (“lirr(’tltl}’ (in Associate Editor of the Jolirnal of Artij7cial
In[<’llig<’t](w Rcscorch (JA IR), and his research interests
itl~l[id(’ model-ba.sed autonomous systems, abstractions and
[i~)rjr{).~it}lcili(~tl.s i n knowledge represenla(ion and
rcwsonit l<q, di[i.gnosis and recovety, and qualitative and

Dr. Barney Pen is a Senior
Computer Sc ien t i s t i n the
Contputationa[Sciences Division at
NASA Ames Research Center. He is
one of the architects of the Remote
Agent for New Millennium 5 Deep
Space One (DS- 1) mission, and leads

team developing the Smart
;ecutive component of the DS-1
Remote Agent. Dr. Pen received a
B.S. degree with distinction in
Symbolic Systems at Stanford
Universi~. He received a Ph.D. in

comptiter science at Cambridge University, England, where
he studied as a Marshall Scholar. His current research
interests include spacecraft alitonomy, integrated agent
circhitect I ire, reactive execution systems, collaborative
softw~ire development, and strategic reasoning. Pen was
guest editor fbr Cotnplitational Intelligence Journal in
1996 cincl has given ttitorials on autonomous agents, space
robotics, and game-playing.

doctoroal progrcimtne in

project, He rkeived
his bachelor’s in Electrical Engineering at A41z continuing
on to receive a Masters and Ph.D. in Computer Science.
While at MIT he developed one of the earliest qtialitative
simlilation sys[ems, TQA, a hybrid qualitative[qlian titative
symbolic algebra system, MINIMA, and a system IBIS for
synthesizing innovative controller designs. Williams was
at Xerox PARC from 1989 to 1994, where he is best known
for his work on the GDE and Sherlock model-based
diagnosis systems. Williams received AAA I best paper
aw’ards in 1988 and 1997 for his w’ork on qualitative
symbolic algebra and incremental truth maintenance. He
was guest editor for Arti>cial Intelligence in 1992, Chair
of the AAAI Tutorial Forlim in 1996 and 1997, and is
clirrently on the editorial board of the Jolirnal of Artificial
Intelligence Research.

Karma Rajan is a member of
the Planning and Schcdliling
grolip at NASA Ames Research
Center. He hold~ a bachelors
jiom the Birla Institlite of Tech.
and Science, Pilani, India and a
Masters from the University of
Texas, Arlington both in
Computer Science. Prior to
joining NASA Ames he was in the
Computer Science at the Colirant

lns[ittite of A!a[hetnatical Sciences at New York Univ. His
pritnary resairch interests are in Platumg, Robotics and
h’nmiledge Representation.

Dr. Ben Smith is a member o f
the A rtljlcial Intelligence groli~)
at JPL, and Deplity Lead of the
JPL element of the DSl planning
team. [le ho[dv a Ph.D. in
computer scit’nce jiom t h e
U n i v e r s i t y o f Solithern
California. /{is research
interests include intelligent
agents, machine learning, and
pl(itming.

Dr. Brian C.
W[lfiatns is
Technical Group
Supervisor of the
intelligent
A utonotnolis Systems
Group at the NASA
Ames Research
Center, and co-lead
of the model-based
atitonomotis systems

